THERMAL DECOMPOSITION OF BIS-(DL-VALINATO)COPPER(II) AND BIS-(DL-METHIONINATO)COPPER(II)*

P. Gili and P. Martín Zarza

DEPARTAMENTO DE QUÍMICA INORGÁNICA, UNIVERSIDAD DE LA LAGUNA, TENERIFE, CANARY ISLANDS, SPAIN

(Received August 28, 1985)

A kinetic study of the thermal decomposition of the complexes bis-(DL-valinato)copper(II) and bis-(DL-methioninato)copper(II) was carried out using thermogravimetry in a dynamic regime, following the theoretical model of Šatava and including the equation used by Johnson and Gallagher: $\frac{1}{1-\alpha} - 1 = kt$. Kinetic parameters were calculated and are compared with those obtained previously for the complex bis-(L-tryptophanato)copper(II). The sequence of thermal stability found is: Cu(DL-Val)₂ < Cu(L-Trp)₂ < Cu(DL-Met)₂.

Little has been published till now on the solid \rightarrow solid + gas reactions of the bis-(aminoacidato)Cu(II) complexes. Olafson and Byran [1] studied the thermal decomposition of some bis-(aminoacidato)Cu(II) complexes by differential scanning calorimetry, and Gili and de la Fuente [2] described the thermal decomposition of the complex bis-(L-tryptophanato)copper(II) using thermogravimetry.

In this work we report for the first time a kinetic study of the thermal decomposition in the solid phase of the complexes bis-(DL-valinato)-copper(II) and bis-(DL-methioninato)copper(II) (abbreviated Cu(DL-Val)₂ and Cu(DL-Met)₂, respectively). This study has been carried out using thermogravimetry in a dynamic regime following the theoretical model of Šatava [3] and including the second-order equation $\frac{1}{1-\alpha} - 1 = kt$ used by Johnson and Gallagher [4].

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

^{*} Presented at the 1985 World Conference on Thermal Analysis, Bad Hofgastein, Austria.

Results and discussion

The curves of loss of mass against temperature and their derivatives indicate one stage in the thermal decompositions of the complexes $Cu(DL-Val)_2$ and $Cu(DL-Met)_2$.

Copper was obtained as final product at 873 K for $Cu(DL-Val)_2$. Similar behaviour was found for bis-(L-tryptophanato)copper(II) [2]. On the other hand, the final product of $Cu(DL-Met)_2$ at 800 K is not Cu [8].

The shapes of the curves obtained by plotting the degree of decomposition (α) vs. T(K) are different for the two complexes. Cu(DL-Val)₂ presents a curve which reflects a large process of acceleration, followed by a short interval of deceleration. For Cu(DL-Met)₂ there is scarcely an acceleratory period.

The logarithms of the functions $g(\alpha)$ [3, 4] were plotted vs. 1/T (K), it was found that the largest correlation factor in the adjustment to linearity by least squares corresponds to the equation $\alpha^2 = kt$ for Cu(DL-Val)₂, which gives a one-dimensional diffusion mechanism as the rate-determining process, and to the second-order equation $\frac{1}{1-\alpha} - 1 = kt$ for Cu(DL-Met)₂.

The activation energy for the thermal decomposition was calculated with the formulae:

$$E_1 = -\frac{449 + \tan\beta}{217}$$
(5)

$$E_2 = \{ [8 \tan \beta \cdot T_m + (\tan \beta)^2]^{1/2} - \tan \beta \}$$
(3)

where tan β is the slope of the selected linear plot of log $g(\alpha)$ vs. 1/T and T_m is the mean temperature.

The results obtained are given in Table 1. For comparative purposes, only the first decomposition step for bis-(L-tryptophanato)copper(II) is included.

The initial temperatures of decomposition indicate that the sequence of thermal stability is:

$$Cu(DL-Val)_2 < Cu(L-Trp)_2 < Cu(DL-Met)_2$$

This sequence does not correspond to the formation constants of the complexes in solution [9].

The lower stability of $Cu(DL-Val)_2$ is probably due to the position of the methyl groups of the ligand. On the other hand, the linear chain of the methionine produces a higher thermal stabilization in the complex, with probable S—Cu interaction at higher temperatures. The decomposition of $Cu(L-Trp)_2$ is more complicated, due to the stability of the indole group.

J. Thermal Anal. 31, 1986

Compound	$T_i, \mathbf{K}, \mathbf{T}_f, \mathbf{K}$		E_a , kJ/mol		Z, s^{-1}		Ref.
			E_{t}	E_2	Z_{i}	Z_2	
Cu(DL-Val) ₂	493	551	494.0	490.1	2.58 · 1045	1.13 · 1045	This work.
Cu(DL-Met) ₂	523	563	600.7	595.8	1.28 · 1056	4.12 · 1055	This work.
Cu(L-Trp) ₂	498	541					(2).

Table 1 T_i (Initial Temperature); T_f (Final Temperature); E_a (Activation Energy) and Z (pre exponential factor) for the thermal decomposition of the complexes

Experimental

Cu(DL-Val)₂ was obtained by mixing DL-valine in hot water with an aqueous solution of Cu(AcO)₂ · H₂O in the required amount. The resulting precipitate was filtered, washed several times with water and then recrystallized. Anal.: Calculated for Cu(C₅H₁₀NO₂)₂: Cu 21.48; C, 40.60; N, 9.47; H, 6.82. Found: Cu, 21.48; C, 40.50; N, 9.36; H, 6.90. Cu(DL-Met)₂ was prepared by the method described by Ou et al. [6]. Anal.: Calculated for Cu(C₅H₁₀NO₂S)₂: Cu, 17.65; C, 33.37; N, 7.78; H, 5.60. Found: Cu, 17.52; C, 33.40; N, 7.75; H, 5.62.

The infrared spectra of both complexes present bands at 3240 and 2910 cm⁻¹, corresponding to the NH₂ group of the ligands, and indicate the coordination of this group to the metal. The NH₂ deformation mode in both compounds was observed as a sharp band at 1580 cm⁻¹, located next to the intense stretching mode of the $-C \ll_{O}^{O}$ -group at 1600 cm⁻¹. Other characteristic bands of the infrared spectra ware found for both complexes in accordance with references [6, 7]

spectra were found for both complexes in accordance with references [6, 7].

The thermogravimetric measurements were carried out on a Perkin-Elmer TGS-2 thermobalance with an FDC first derivative computer, in a nitrogen atmosphere. The heating rate was 5 deg/min. Each run was repeated twice and the experimental reproducibility was good for each mass used ($\simeq 4$ mg).

References

- 1 P. G. Olafson and A. M. Byran, Chem. Commun., 23 (1968) 1473.
- 2 P. Gili and K. de la Fuente, Inorg. Chim. Acta, 78 (1983) L5-L6.
- 3 V. Šatava, Thermochim. Acta, 2 (1971) 423.
- 4 D. W. Johnson and P. K. Gallagher, J. Phys. Chem., 75 (1971) 150.
- 5 J. Šestak, Thermochim. Acta, 3 (1971) 150.
- 6 C. C. Ou, D. A. Powers, J. A. Tich, T. R. Felthause, D. N. Hendrickson, J. A. Potenza and H. J. Strugar, Inorg. Chem., 17 (1978) 34.
- 7 A. W. Herlinger, S. L. Wenhold and T. V. Long, J. Am. Chem. Soc., 92 (1970) 6474.
- 8 P. Gili and P. Martín Zarza, to be published.
- 9 A. E. Martell and R. M. Smith, Critical Stability Constants, Vol. 1, Plenum Press, New York and London, 1974, pags 9, 50, 63.

Zusammenfassung — Die thermische Zersetzung der Komplexe Bis-(DL-valinato)kupfer(II) und Bis-(DL-methioninato)kupfer(II) wurde thermogravimetrisch im dynamischen Regime untersucht, indem von dem theoretischen Modell von Šatava Gebrauch gemacht und die von Johnson und Gallagher benutzte Gleichung $\frac{1}{1-\alpha} - 1 = kt$ einbezogen wurde. Kinetische Parameter wurden berechnet und mit den kürzlich für den Komplex Bis-(L-tryptophanato)kupfer(II) erhaltenen parametern verglichen. Die Stabilität der Komplexe nimmt in folgender Reihenfolge zu: Cu(DL-Val)₂ < Cu(L-Trp)₂ < Cu(DL-Met)₂.

Резюме — Кинетическое исследование термического разложения комплексов бис-(ДLвалинато)- и биз-(ДL-метионинато)меди(II) проведено методом термогравиметри в динамическом режиме, следуя теоретической модели Сатавы и включая уравнение Джонсона—Гэллэхера: $\frac{1}{1-\alpha} - 1 = kt$. Вычисленные кинетические параметры были сопоставлены с полученными ранее для комплекса бис-(L-триптофанато)меди(II). По термоустойчивости комплексы располагаются в ряд Cu(DL-Val)₂ < Cu(L-Trp)₂ < Cu(DL-Met)₂.

J. Thermal Anal. 31, 1986